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EXECUTIVE SUMMARY 
 

1.​ Introduction 
 

1.1.​ Scope and content of the document 
 
The objective of this document is to describe the theoretical basis, justification and methods 
applied to produce annual maps of land use and land cover (LULC) in Chile from 1999 to 
2024 (Collection 2). The document presents a general description of the satellite image 
processing, the feature inputs and the process step by step applied to obtain the annual 
classifications. 

 
1.2.​ Overview 

 
Details about the classification methods are provided in order to assist the user to gain a 
general understanding of the technical considerations involved, the definition of 
intermediate inputs and outputs as well as scientific references supporting each decision. In 
addition, this document presents a historical context and background information, a general 
description of the satellite imagery datasets, feature inputs, and the accuracy assessment 
method applied. This information is intended to inform users about the strengths and 
limitations of MapBiomas Chile Collection 1 product. 

 
MapBiomas collections aim to contribute to developing a fast, reliable, collaborative, and 
low-cost method to process large-scale datasets and generate historical time series of 
LULC annual maps. All data, classification maps, codes, statistics, and further analyses are 
openly accessible through the MapBiomas Chile platform (http://chile.mapbiomas.org/). This 
is possible thanks to: 

 
i.​ Google Earth Engine platform, which provides access to data, image processing, 

standard algorithms, and cloud computing facilities. 
ii.​ Freely available Landsat time-series dataset. 

iii.​ MapBiomas collaborative network of organizations and experts that share 
knowledge and mapping tools. 

 
1.3.​ Region of Interest 

 
Chile is a long, narrow country located along the western edge of South America, stretching 
over 4,300 kilometers (2,670 miles) from North (17°30' S) to South (55°59' S). Notably, a 
high rate (about 45%) of the species are endemic, which can be attributed to its isolation 
(Squeo et al. 2012). Chile boasts diverse geography, including the Atacama Desert, one of 
the driest places on Earth, in the North, the Andes Mountains running along its Eastern 
border, and the Pacific Ocean to the west. The Central valley, in the mid latitudes of the 
country, is an agricultural and heartland known for its fertile soils and Mediterranean 
climate. It is where most of Chile's population resides and is home to major cities like 
Santiago, the capital. In Southern Chile, the Lake District is known for its stunning 
landscapes of lakes, forests, and snow-capped mountains. Further South, the northern part 
of Chilean Patagonia is 

 

http://chile.mapbiomas.org/)


characterized by rugged terrain, fjords, and glaciers. Near the end of the continent, 
Patagonia becomes even more remote and wild. It features vast expanses of untouched 
wilderness, including the Southern Patagonian Ice Field, the third-largest ice mass in the 
world. 
 

1.4.​ Key Science and Applications 
 
The scientific applications derived from an annual time-series history of LULC maps in Chile 
include: 

■​ Mapping and quantifying LULC transitions. 

■​ Quantification of gross and net forest cover loss and gain. 

■​ Monitoring agriculture, forest plantations and pasture expansion. 

■​ Land planning and assessment. 

■​ Assessing urban expansion and planning. 

■​ Water surface and glaciers loss and gain. 

■​ Protected areas management. 

■​ Biodiversity assessment and distribution modelling. 

■​ Climate change adaptation and mitigation strategies. 

 



2.​ Overview and Background Information 
 

2.1.​Context and Key Information 
 

Land cover is defined as the biological or physical cover observed on the earth's surface 
(FAO, 2016). Land cover data are used at both a global and local scale in the analysis of 
climate change, carbon stock assessment, monitoring of forestry and agricultural activities, 
disaster management, territorial planning, urban planning, biodiversity conservation and in 
many other public and private spheres. On the other hand, due to the transformations 
inherent to growth and development, land cover is highly dynamic over time and depends 
on a set of factors and human decisions that determine the use given to each portion of the 
territory. To meet the demands of sustainable development and international commitments, 
the country requires multiple sources of data for land cover monitoring that can satisfy 
current and future demands both domestically and internationally. However, to do this, a 
land cover monitoring system should have the following characteristics: 

 
a.​ To be based on consistent, unique and systematically applied classification 

principles, replicable in space and time. 
b.​ To be able to describe the full range of possibilities and their details through 

different hierarchical levels. 
c.​ To be complete, covering the whole target territory. 
d.​ To consider unique, mutually exclusive and unambiguous classes and 

categories. 
 

2.2.​Historical Perspective in Chile: Existent Maps and Mapping Initiatives 
 
In Chile, there currently exists no comprehensive Land Cover monitoring system covering 
the national territory. The most analogous initiative, albeit only partially comparable, is the 
"Catastro and Evaluation of Native Vegetational Resources," established in the 1990s and 
presently managed by the National Forestry Corporation (CONAF). However, this initiative 
predominantly focuses on forested areas, often neglecting agricultural or urban land covers. 
Its inadequacy as a true monitoring system stems from its lack of systematic application 
over time. Furthermore, its complexity arises from the amalgamation of three distinct 
concepts: plant formations (utilizing a land occupation mapping method), biophysical 
coverage, and land use (socio-economic designation). Consequently, this framework 
remains largely incompatible with international land cover products, and that needs to be 
addressed in the near future. 

 
Moreover, methodological alterations, such as changes in the minimum mappable area and 
revisions in the definition of certain forest types, further undermine its reliability as a 
monitoring tool. Compounding these challenges is the absence of standardized or routine 
updates at the national level, with variations observed across different regions. This 
persistent stagnation is highlighted by several scientific publications openly disputing the 
accuracy of data derived from the cadastre (Miranda et al., 2018). 

 



While the Natural Resources Information Center (CIREN) serves as another repository of 
cartographic data, focusing on the management of natural resources and production in 
Chile, its primary emphasis lies on providing information pertinent to the economic 
utilization of land. This includes data on hydrogeological zones, well formations, hydraulic 
infrastructure, agroclimatic parameters, orchard mapping, land ownership records, and land 
use capacity. However, akin to the Cadastre, CIREN does not offer regular or systematic 
updates conducive to effective land cover monitoring. 

 
The only preexistent “actual” land cover map was produced by Zhao et al. (2016). They 
generated a conclusive land cover map by integrating results from multi-seasonal mapping, 
utilizing primarily Landsat 8 imagery acquired predominantly in 2013 and 2014. 
Supplementary data sources included MODIS Enhanced Vegetation Index data, 
high-resolution imagery from Google Earth, and Shuttle Radar Topography Mission DEM 
data. The integrated map achieved an overall accuracy of 80% at level 1 and 73% at level 
2, as confirmed by independent validation data. Accuracy assessments for seasonal map 
series yielded approximately 70% for each season, with significant enhancements observed 
through the integrated use of seasonal information. However, this product wasn't conceived 
as a monitoring system providing only a 2014 LULC map. 

 



3.​ Algorithm Descriptions, Assumptions, and Approaches 
 
The Collection 2 general methodological steps are presented in Figure 1. 

 
 

 
Figure 1: General methodological steps of Collection 2 of land cover and land use annual maps in 

Chile. 

 
The first step was to generate annual Landsat mosaics comprising specific temporal 
windows to optimize the spectral contrast and better discriminate the LULC classes across 
the country. The second step was to derive all feature space attributes from the Landsat 
bands to train one random forest classifier (feature space definition) for each year 
(Breiman, 2001). In the third step, spatial-temporal filters were applied over the classified 
data for noise removal and temporal stabilization.  
 
Subsequently, the filtered LULC maps 
of each working zone were 
hierarchically merged (integrated) 
based on a set of prevalence rules. 
Spatial and temporal filters, as well as 
post-processing remapping algorithms, 
were once again applied on the 
integrated maps to create the final 
Collection 2 product. For Collection 2, 
ecoregions were used to stratify the 
national territory. This allowed for the 
collection of sampling points that 
explicitly considered the biophysical 
differences of the country's various 
geographic zones. Ecoregions are large 
geographic units that group natural 
communities with distinctive species 
compositions, ecological dynamics, and 
shared environmental conditions (Olson 
et al., 2001). We consider eight 
ecoregions: Dry Puna, Atacama Desert, 
Andean Steppe, Chilean Matorral, 
Valdivian temperate forests, Magellanic 
subpolar forests, Patagonian steppe 
and Ice and Rocks (Figure 2).  
​ ​ ​ ​ ​ ​ ​ Figure 2: Chilean Ecoregions.  
 
 

 



 
3.1.​Landsat Mosaics and Feature Space 

 
Landsat cloud free composites obtained from images distributed along the whole year were 
considered (Figure 3) The cloud/shadow removal script takes advantage of the quality 
assessment (QA) band and the GEE median reducer. When used, QA values can improve 
data integrity by indicating which pixels might be affected by artifacts or subject to cloud 
contamination (USGS, 2017). In conjunction, GEE can be instructed to pick the median 
pixel value in a stack of images. By doing so, the engine rejects values that are too bright 
(e.g., clouds) or too dark (e.g., shadows) and picks the median pixel value in each band for 
a specific year. Because for a large part of the national territory, approximately from the 
latitude of Santiago to the South, the availability of images from the Landsat program for 
years prior to 1998 is very low, it was decided to cover the period 1999 to 2024 for the 
second collection. For future collections, it is expected to extend the length of the time 
window used and to improve the quality of the mosaics.  
 

 
 

Figure 3: General workflow to build a year's mosaic. 

 



 
Figure 4: Each pixel of the mosaic contains 184 metrics or layers of information. 

 



The feature space for LCLU classification is composed of 184 input variables per year, including 
the original Landsat bands and fractional and textural information derived from those bands 
(Table 1, Figure 4). Table 1 presents the formula or the description to obtain these variables, as 
well as highlights in grey all the bands, indices, and fractions available in the feature space. In 
addition, statistical reducers were used to generate temporal features such as: 

 

● Median: median of the pixel values within the defined stack of images. 

● Median_dry: median of the quartile of the lowest pixel NDVI values. 

● Median_wet: median of the quartile of the highest pixel NDVI values. 

● Amplitude: amplitude of variation of the index considering all the year's images. 

● stdDev: stdDev of the pixel values within the defined stack of images. 

● Min: the lower annual value of the pixels of each band. 

● Max: the higher annual value of the pixels of each band. 

 

Some classes, due to their specific methodologies, used a subselection of these bands for 
classification. 

Table 1: List of variables used as predictors for LULC classification. 
 
 Variable Descripción median dry wet min max amp stdDesv 

Bands 

blue B1(L5 L7); B2 (L8)        
red B2(L5 L7); B3 (L8)        

green B3(L5 L7); B4 (L8)        
nir B4(L5 L7); B5 (L8)        

swir1 B5(L5 L7); B6 (L8)        
swir2 B7(L5); B8 (L7); B7 (L8)        

Fractions 

gv fractional abundance of green 
vegetation within the pixel  (0-1)        

npv 
fractional abundance of 

non-photosynthetic vegetation within 
the pixel  (0-1) 

       

soil fractional abundance of soil within the 
pixel (0-1)        

cloud fractional abundance of cloud within 
the pixel (0-1)        

shade abundancia fraccional de sombras 
(0-1)        

 Fraction 
Indexs 

fns Fracción no sombreada (1-shade)        

gvs Green fraction in shadow [gv / (gv + 
npv + soil + cloud)]        

ndfi 
vegetation structure index [(gvs - (npv 

+ soil))/(gvs 
+ (npv + soil))] 

       

sefi 
Enhanced soil fraction index 

[(gv+npv_s - 
soil)/(gv+npv_s + soil)] 

       

wefi 
Enhanced wet fraction index 

[((gv+npv) - (soil+shade)) / ((gv+npv) 
+ (soil+shade))] 

       

Bands 
Index  

cai Cellulose Absorption Index 
[swir2/swir1]        

evi2 Enchanced Vegetation Index  [(2.5 
✕((𝑁𝐼𝑅 − 𝑅𝐸𝐷)        

 



(𝑁𝐼𝑅 + 2.4 ✕ 𝑅𝐸𝐷 + 1 ))] 

gcvi Green chlorophyll vegetation index 
[𝑁𝐼𝑅 *(𝐺𝑅𝐸𝐸𝑁 − 1)]        

hallcover 
 Estimation of vegetation cover  

[(-red*0.017 - nir*0.007 - swir2*0.079+ 
5.22)] 

       

hallheigth Estimation of vegetation height 
cove[a×Red+b×NIR+c×SWIR2+d]        

ndvi Normalized difference vegetation 
index  [(nir - red)/(nir + red)]        

ndwi Normalized difference wet index   [(nir 
- swir1)/(nir +swir1)]        

pri 
Photoquimical reflectance index 

[(𝐵𝐿𝑈𝐸 − 𝐺𝑅𝐸𝐸𝑁)/ 
(𝐵𝐿𝑈𝐸 + 𝐺𝑅𝐸𝐸𝑁)] 

       

savi 
Soil-adjusted vegetation index [(1 + 

0.5)✕(𝑁𝐼𝑅 − 𝑅𝐸𝐷)/ 
(𝑁𝐼𝑅 + 𝑅𝐸𝐷 + 0.5)] 

       

ndmi 
Normalized Difference Moisture Index 

[(𝑁𝐼𝑅 − (𝑆𝑊𝐼𝑅1 − 𝑆𝑊𝐼𝑅2))/(𝑁𝐼𝑅 + 
(𝑆𝑊𝐼𝑅1 − 𝑆𝑊𝐼𝑅2))] 

       

ndbi Normalized Difference Built-Up 
Index [(𝑆𝑊𝐼𝑅1 − 𝑁𝐼𝑅)/(𝑆𝑊𝐼𝑅1 + 𝑁𝐼𝑅)]        

mbi 
Modified Bare Soil Index [(𝑆𝑊𝐼𝑅1 − 
𝑆𝑊𝐼𝑅2 − 𝑁𝐼𝑅)/(𝑆𝑊𝐼𝑅1 + 𝑆𝑊𝐼𝑅2 + 𝑁𝐼𝑅) 

+ 0,5] 
       

ndsi Normalized Difference Snow Index 
[(GREEN-SWIR1)/(GREEN+SWIR1)]        

Otras 
variables 

slope Extracted from ALOS DSM: Global 
30m with Terrain Analysis        

Elevation Extracted from SRTM 30m        

Aspect Extracted from SRTM 30m with 
Tearrain Analysis        

TPI elevation - mean elevation (from 
square neighborhood of 180 meters)         

green_me
dian_text

ure 

Median of the spatial pattern of the 
green band in a defined 

neighborhood. 
       

 

 



3.3.​LULC scheme and Classification 

 
3.3.1.​ Legend 

 
The MapBiomas classification scheme is a hierarchical system comprising four categorical 
levels (Table 2). For the Chilean Collection 2, we considered the first three levels. At Level 1, 
there are six classes: 1) Forest formation, 2) Natural non-forest formation, 3) Farming and 
silviculture, 4) Non-vegetated area, 5) Water bodies, and 6) Not observed. 
 
Level 2 comprises 13 classes distributed across the six Level 1 categories. Among them, class 
1.1 (Forest) is the only one subdivided into a third categorical level, which includes three 
subclasses that differentiate types of forest formations. 

 
Table 2: Classes of land cover and land use of MapBiomas Collection 2 in Chile.   

 

Class Level 1 Class 
Level 2 

Class 
Level 3 Description FAO Class* 

1. Forest formation 

1.1. Forest 

Vegetation formations dominated by native tree 
species over 2 meters tall. This includes primary, 
secondary (regrowth), and dwarf native forests. 
Forest is defined as having a minimum canopy cover 
of 25%. 

FEP, FEM, 
FEY, FDP, 
FDM, FDY 

1.1. 
Forest 

1.1.1 
Primary 
Forest 

Forests with diverse vertical and horizontal structure. 
They contain large individuals, according to their 
ecoregion, that remain stable during the study 
period. In the imagery, this is reflected as textural 
diversity due to the influence of structural 
heterogeneity and the presence of shadows and 
gaps. 

FEP, FDP, 
FSP 

1.1.2 
Secondary 
Forest 

Forests with homogeneous vertical and horizontal 
structure. They contain individuals of similar size and 
age, which may or may not remain stable during the 
study period. In the imagery, this is reflected as 
lower textural diversity compared to primary forests. 
In general, they are represented by a single 
dominant species. 

FEM, FEY, 
FDM, FDY, 
FSM, FSY 

1.1.3 Dwarf 
forest 

Forest ecosystems characterized by the presence of 
low-stature trees and very dense forest. In general, 
they show interlaced crowns and are dominated by a 
single species. These forest communities, mainly of 
the genus Nothofagus, develop under restrictive 
environmental conditions such as poor soils, wind 
exposure, high radiation, low water availability, or 
high elevations, which limit the vertical growth of the 
species. In the imagery, this is reflected as lower 
textural diversity compared to secondary forests. 

N/A 

 



2. Natural non 
forest formation 

2.1. Wetland 

Ecosystems associated with water-saturated 
substrates, either temporarily or permanently. For 
delimitation purposes, the presence of hydrophilic 
vegetation is considered. They are generally found 
in topographic depressions or poorly drained soils. 
They may correspond to marshes, swamps, 
high-Andean wetlands (bofedales), and peatlands of 
natural or artificial origin, with stagnant or flowing 
water, fresh or saline. 

OM, WW 

2.2. Grassland Areas dominated by natural herbaceous vegetation. OG 

2.3. Steppe 

This class is subdivided into two types based on 
their geographic distribution: (1) High Andean 
steppe: Areas dominated by natural formations of 
herbaceous vegetation of the pajonal type. In this 
class, the presence of low woody species of the tolar 
type with variable cover is allowed. This class is 
mainly found above 3,200 m a.s.l., which may vary 
according to latitude. (2) Patagonian steppe: Areas 
dominated by natural formations of herbaceous 
vegetation of the pajonal type. In this class, the 
presence of low woody species with variable cover is 
allowed. 

N/A 

2.4. Shrubland 

Vegetation formations dominated by shrub or 
low-stature tree species (less than 2 meters tall), 
whether native or exotic, with a minimum canopy 
cover of 25%. Shrublands may have different 
densities and can mix with other classes. 

WS, WG 

2.5. Rocky Outcrop Areas with exposed rocks, generally found in steep 
slope zones or severely eroded areas. OX 

3. Farming and 
silviculture 

3.1. Silviculture 

Areas covered by exotic species of silvicultural 
interest, mainly from the genera Pinus and 
Eucalyptus. This class includes harvested stands 
and areas invaded by natural regeneration of these 
species. No distinction is made between different 
regimes of ownership or land use (silvicultural, 
agricultural, or other). 

FPB, FPC, 
FPM 

3.2. Agriculture 
Areas covered by annual, temporary, and/or 
perennial crops, either active or in fallow. Orchards, 
fruit trees, vineyards, and greenhouses are included. 

OCA, OCP, 
OCM, OF 

3.3. Pasture Areas covered by herbaceous vegetation, 
associated with livestock activity. OP 

4. Non-vegetated 
area 

4.1. Infrastructure 
Urban and industrial areas, main roads, and other 
artificial structures such as seaports and airports. 
Mining and solar energy areas are not included. 

OB 

4.2. Beach, Dune 
and Sand Spot 

Areas covered by different types of sand with little or 
no vegetation. OX 

 



4.3. Salt Flat 
Areas characterized by large expanses of flat land 
covered by a layer of salt or mineral salts. Water 
bodies within salt flats are classified as water. 

OX 

4.4. Other 
non-vegetated area 

Areas characterized by large expanses of flat land 
covered by a layer of salt or mineral salts. Water 
bodies within salt flats are classified as water. 

OX 

5. Water bodies 

5.1. River, lake or 
ocean 

Areas permanently covered by water, of natural or 
anthropic origin. 

IRP, IRS, IL, 
ID, IP, XO 

5.2. Ice and snow 
Areas with permanent and superficial snow or ice 
cover, generally located in the Andean peaks. 
Debris-covered or rock glaciers are not included. 

N/A 

6. Not observed 6. Not observed 
Unclassified areas due to the presence of 
permanent clouds and shadows, atmospheric noise, 
low quality of satellite imagery, or lack of information. 

90 

 
 

 



3.3.2.​ Samples and stable Samples 
 
The first step of the classification process was created in each of the eight ecoregions a set 
of sampling points for training the classification algorithm reaching a total of 311.442 points 
(see table 3 for details) obtained using random pixels selected from manually drawn 
polygons made by photo interpretation for all the classes for each ecoregion. For this, 
false-color composites of the Landsat mosaics for all the 25 years as backdrop and graphs 
with the temporal behavior of spectral indices per pixel were used to establish the LULC 
class. The need for complementary samples was evaluated by visual inspection and by 
comparing the output of the preliminary classification with both Landsat and high-resolution 
images available in GEE.  

 
Table 3: Sampling points per class and ecoregion. 

 
C L A S S E S E C O R E G I O N S 

Name Id Dry Puna Atacama 
Desert 

Chilan 
Matorral 

Andean 
Steppe 

Valdivian 
Temperate 

Forest 

Patagonian 
Steppe 

Magellanic 
Subpolar Forest 

Ice and 
Rock 

Primary Forest 59 4723 5000 1628 64 11091 4977 1468 735 
Secondary Forest 60 0 0 966 49 4082 316 1023 181 
Dwarf forest 67 0 0 0 0 1122 263 502 53 
Shrubland 66 231 608 1665 240 3519 205 270  
Wetland 11 5000 850 3783 2945 13526  5000  
Silviculture 9 0 0 4528  14777  222  
River, Lake or Ocean 33  410 5532 712 20590 5000 5000 157 
Beach, Dune and Sand 23  1955 5585  5597 1059 380  
Pasture 15   692  2693 176 137  
Agriculture 18 129 192 3304 258 2223 137   
Grassland 12 0  407 542 1027    
Steppe 63 2623 817   0 894 948  
Non-vegetated area 25 5000 2000 5000 5000 15000    
Ice and Snow 34 5000   5000 15000 5000 5000 5000 
Rocky Outcrop 29 974 886 6468 5000 3066 212 688  
Infrastructure 24 329 5000 9000 558 19590 850 5000  
Salar 61 5000 5994 5000 1039     
Number classes  14 14 15 13 16 12 13 5 
Total Points 311.442 

 
These were the starting points for building the preliminary classification. 
 

3.3.3.​ Classification 
 

Digital classification was performed in each working zone, year by year, using a Random 
Forest algorithm (Breiman, 2001) available in Google Earth Engine, running 100 iterations 
(random forest trees). Final classification was performed for all working zones and years 
with stable and complementary samples (Figure 5). All years used the same subset of 
samples and it was trained in the same mosaic of the year that was classified. The class 
"Infrastructure" was left out of this classification step (for details, see Appendix 1). It was 
classified in a separate process and integrated in the post-processing step. In addition, due 
to mosaic issues, the ice and snow class was also processed independently and overridden 
in the final classification (for details, see 3.4.7). 

 

 



 

Figure 5: Representation of Landsat mosaic and training samples with two classes (red and blue}. 
 

 
3.4.​ Post-Processing 

 
The results of the final classification in each working zone were improved by applying a set 
of filters. In the first place, a serie of temporal filters were done with the aim to generate a 
more stable classification pattern over time, avoiding unexpected class variation during 
consecutive years or a short period of time. In second place, filters to correct missing data 
were applied in order to recover areas without information with pixels from previous or 
subsequent years. In third place, spatial filters were applied to reduce the  "salt-and-pepper" 
effect. 

 
3.4.1.​ Temporal filters 

The temporal filters are applied over sequential annual classifications using a unidirectional 
moving window of three, four, or five years, in order to identify temporally non-permitted 
transitions (Figure 6). These filters evaluate the temporal consistency of class assignments for 
each pixel, correcting inconsistencies that are interpreted as classification errors. 

The temporal filter inspects the central position of the moving window, and if a pattern 
inconsistent with temporal stability is detected, the central pixel(s) are reclassified to match the 
dominant neighboring class. 

Temporal filters were divided into two main categories according to their function: regular and 
extremes (beginning and ending). 

(i) Regular filters (3-, 4-, and 5-year windows) 

 



Regular filters are applied to the central part of the time series and aim to correct short-term 
temporal inconsistencies. 

●​ The 3-year filter (ternary) operates on three consecutive years (t−1, t, t+1). If the classes 
of the first and third years are identical and the central year differs, the central pixel (t) is 
reclassified to match its neighbors.​
 

●​ The 4-year filter operates on a four-year window (t−1, t, t+1, t+2). If the first and fourth 
years share the same class and the two central years are identical but different from the 
outer years, then both central pixels (t and t+1) are reclassified to match the stable outer 
class.​
 

●​ The 5-year filter extends this logic to a five-year window (t−2, t−1, t, t+1, t+2). When the 
three central years share the same class that differs from the outer years, and those 
outer years are identical to each other, all three central pixels are reclassified to match 
the temporally stable class at the extremes. 

 
Figure 6: Temporal filter concept. 

 

(ii) Extreme filters (beginning and ending) 

Extreme filters are applied exclusively to the temporal boundaries of the time series — that is, the 
first and last years. For the first year, each pixel is compared with its class in the following year 
(x+1); for the last year, the comparison is made with the preceding year (x–1). 

The decision rule states that if a pixel’s class in year x differs from that of its adjacent year, 
belonging to different thematic groups (i.e., anthropic vs. natural), the pixel in year x is 
reclassified to match the class of its neighboring year (Figure 7). 

 

 



 
Figure 7: Extreme filter concept 

 



 
3.4.2.​ Gap fill filters. 

 
A filter was applied to fill no-data pixels, or “gaps,” within the temporal series. Since, in principle, 
no-data values are not permitted, they were replaced with the temporally nearest valid 
classification. 

In this procedure, if no valid future observation was available, the no-data pixel was replaced by 
its most recent valid class. Consequently, gaps should only persist in cases where a given pixel 
remained classified as no-data throughout the entire temporal domain. 

3.4.3.​ Spatial filters 
 
The spatial filter avoids unwanted modifications to the edges of the pixel groups, a spatial 
filter was built based on the "connectedPixelCount" function. Native to the GEE platform, 
this function locates connected components (neighbors) that share the same pixel value 
(Figure 8). Thus, only pixels that did not share connections to a predefined number of 
identical neighbors were considered isolated. In this filter, at least six connected pixels were 
needed to reach the minimum connection value. Consequently, the minimum mapping unit 
is directly affected by the spatial filter applied, and it was defined as 11 pixels (~1 ha). 

 

Figure 8: Spatial filter concept. 

 
3.4.4.​ Additional filters and remapping. 

 
In addition to the general filters, a set of additional rule-based filters was applied to address 
specific classification inconsistencies observed in particular coverage types. These filters consist 
of targeted remapping procedures designed to improve thematic coherence and ensure a more 
realistic temporal evolution of the classes. 

●​ Post-fire plantation remapping 

 



One of these procedures corresponds to the post-fire plantation remapping, which adjusts the 
classification of pixels affected by fire events, ensuring that areas reforested or reestablished as 
Plantations after a burn are consistently represented through time. This correction is based on a 
set of predefined logical rules that evaluate the class sequence before and after the detected fire 
event, remapping affected pixels to the appropriate stable class when necessary. 

Such additional rule-based corrections were applied selectively and only in regions or land-cover 
types where systematic misclassifications were identified, improving the overall temporal and 
thematic consistency of the MapBiomas Chile Collection 2 classification series 

●​ Frequency filters. 
 
The frequency filter was applied after the temporal filtering stage and was specifically designed 
for some classes (i.e. Silviculture,  Agriculture). The purpose of this filter is to reinforce temporal 
stability in land-cover types that are expected to remain consistent over time, correcting residual 
fluctuations that may persist after the application of the temporal filters. 
 
This filter operates by analyzing the frequency of class occurrence for each pixel within the final 
years of the time series. For every pixel, the filter identifies the first year from which a given class 
becomes dominant or recurrent in the subsequent years. Once this year is detected, all following 
years are reassigned to the most frequent class within that period. In practice, this approach 
replaces sporadic or inconsistent class changes with the modal (most frequent) class observed in 
the stable portion of the series (Figure 9). 
 
By consolidating the most recent and stable periods of classification, the frequency filter 
enhances the temporal coherence of the dataset and minimizes isolated classification noise.The 
result is a more stable and realistic representation of these coverage types across the most 
recent years of the MapBiomas Chile time series. 
 

 
Figure 9: Frequency filter concept 

 
●​ Mode Filter  

 
The temporal mode filter is applied to improve the year-to-year consistency of specific land-cover 
classes and to reduce residual high-frequency changes in the series after applying other 

 



temporal filters. It relies on a multiband classification, a target class (e.g., Wetlands), a set of 
alternative classes for controlled remapping, and a spatial mask that limits the intervention to 
areas where inconsistency is detected. For each year, the image is remapped to the selected 
alternative classes. The correction is applied only where the pixel belongs to the target class in 
that year. This method stabilizes false changes induced by classification noise, shadows, or 
spectral confusion, while the remapping constrains substitutions to ecologically coherent classes. 
 
 

●​ Morphological filter. 
 
The morphological filter is a spatial post-processing operation applied to the classification maps 
to improve the geometric consistency of the forest plantation class. It aims to remove small 
holes, isolated pixels, and internal irregularities that appear within plantation patches, ensuring a 
more homogeneous and realistic spatial representation. The procedure is based on a 
morphological closing operation, a common technique in image processing used to fill small 
internal gaps while preserving the general shape of the features. 
 
The annual classification is first converted into a binary mask identifying all pixels corresponding 
to plantations, over this binary mask, the closing operation is performed by applying a dilation 
followed by an erosion. The dilation temporarily expands the extent of the plantation areas, 
allowing small gaps between neighboring pixels to be filled. Subsequently, the erosion step 
contracts the expanded areas, restoring the external shape of the polygons while maintaining the 
newly filled internal pixels. Both operations are applied using a diamond-shaped structuring 
element with a radius of one pixel, equivalent to 30 meters at the working resolution of the 
MapBiomas Chile classification. 
 
The effect of this operation is subtle but significant: it eliminates micro-fragmentation within 
homogeneous plantation blocks and reduces pixel-level noise that can occur along internal 
boundaries. Importantly, the morphological filter acts only within the existing plantation mask and 
does not expand the plantations beyond their local boundaries, preserving the integrity of 
adjacent classes and the original spatial structure of the map.  
This morphological approach provides a controlled, geometry-based correction that improves the 
internal coherence and visual quality of plantation areas, particularly in regions where topography 
or image mosaicking may introduce small classification discontinuities. The resulting product 
achieves greater cartographic smoothness without compromising thematic precision. 

 



 
3.4.5.​ Ice and snow classification 

 
Because of gaps in the mosaics used for Landcover classification, the ice and snow class 
(class 34) was developed separately. To accomplish this, we used the Collection 1 (COL1) 
classification for the period 2002–2020, and produced new classifications for the years 1999, 
2000, 2001, 2021, 2022, 2023, and 2024. 
 
For each year, a mosaic was generated using all available images from that year, after 
filtering out pixels affected by clouds, cloud shadows, and cirrus. Subsequently, a 
classification was generated by applying a decision tree, based on a minimum NDSI 
threshold and NIR and red band values representative of the dry season, defined as the first 
quartile (25th percentile) of NDSI values. Pixels meeting these criteria were classified as ice 
and snow (Figure 10). 
 
Finally, a temporal filter with 3-, 4-, and 5-year windows—as described for the main land 
cover classification— was applied to enhance temporal consistency.  
 

 
 

Figure 10: Decision tree applied 
 

3.5.​Integration and Transitions Maps 
 
 

3.5.1.​Integration 
 

The integration step involved a process that compiled/overlapped classifications prepared 
by the different teams for the four working zones. This process resulted in a raster map with 
all classes from 1999 to 2024. Maps of each working zone were integrated on a 
pixel-by-pixel basis through the hierarchical overlap of each mapped class, following 
prevalence rules defined by experts. 

 

The "Infrastructure" (id 24) class was classified independently. This was necessary due to 
frequent confusion with non-vegetated use classes such as "other areas without vegetation" 
(id 25), "rocky soils" (29) and "sand, beach and dunes" (id 23). Before the overlay was 
performed, the infrastructure map was further processed. The vector map of main regional 

 



and national roads of Chile1 was converted to raster and joined year by year with the 
infrastructure classification. Finally, the infrastructure layer was integrated into the general 
map following a series of rules that were applied pixel by pixel to different areas of the 
country. A similar process occurred with Ice and Snow class (id 34), which was also 
generated independently. Once it is fully processed, it is superimposed on the general map. 
 
 

 
 

1  https://mapas.mop.gov.cl/red-vial/Red_Vial_Chile.zip 

 



3.5.2.​ Transition maps 
 

The pixel-by-pixel class differences between any two maps are now computed based on 
user-defined temporal ranges (Figure 11). Unlike the previous approach — which produced 
predefined transition maps for fixed intervals such as consecutive years, five-year, and 
ten-year periods — the current methodology allows the user to freely select the start and end 
years for the analysis. This flexible configuration enables the generation of customized 
transition maps that better reflect the temporal scale and dynamics of interest. 
 
The resulting transition maps represent land-cover and land-use changes (LULC) between 
the selected years, highlighting the main processes of transformation in the landscape, 
including: 
 

■​ Transitions from agricultural classes or non-vegetated areas to forest cover or 
non-forest natural areas. 

■​ Areas corresponding to primary forests that, due to natural or anthropic 
disturbances, have been degraded and converted into secondary forests. 

■​ Transitions that add water surface. 
■​ Transitions that reduce water surface 
■​ Transitions with gain in forest plantation. 
■​ Transitions from forest cover or non-forest natural areas to agricultural or 

non-vegetated areas. 
■​ Areas under a rotational system alternating from agriculture to pasture from year to 

year. 
■​ Areas under a rotational system alternating from pasture to agriculture from year to 

year. 
■​ Areas without transition or transitions involving unobserved areas or transitions 

between classes within level 1 of the legend. 
 
 

 

Figure 11: Transition map concept. 
 

 
Additional spatial filters were applied to the transition maps to remove isolated pixels or 

 



linear artifacts located along class boundaries, which may arise during the creation of 
pixel-based transition layers. The main rules for this filter include: (i) the elimination of pixels 
with only one neighboring pixel belonging to the same transition class, and (ii) the removal 
of linear features or small groups of up to five pixels with one or two neighboring pixels of 
the same class. These filters improve spatial coherence and reduce noise in the final 
transition products. 

 
3.6.​Post-processing 

 
3.6.1.​ Slope-shadow filters 

Due to the steep topography of the Chilean Andes, deep shadows in the mosaic led to many 
pixels being erroneously classified as “River, lake or ocean” (class 33). To correct this, we first 
built a mask of pixels whose slope (from SRTM) exceeds 15°. Within this mask, we applied (i) a 
spatial filter using a 4×4 neighborhood: when a pixel met the slope condition and was labeled 33, 
its value was remapped to the neighborhood mode. Next, (ii) we applied a temporal mode filter 
under the same conditions, excluding class 33 as a possible target class (i.e., the mode was 
computed among the other classes). This approach reduced false water detections in shadowed 
areas. 

3.6.2.​ Rules-based remapping  

The Steppe class (id 63) in northern Chile was restricted to areas with elevations greater or equal 
to 3,200 m a.s.l., in accordance with the published literature. All vegetation below this threshold 
was reclassified as Grassland (id 12). To implement this rule, we built an elevation mask from the 
SRTM DEM. The restriction was applied in all Chile, except in the territories corresponding to the 
Aysén and Magallanes regions. 

For the Salt flat class (id 61), an additional remapping was applied due to the frequent confusion 
with Ice and Snow (class 34), arising from their spectral similarity in the feature space used. We 
employed the Chilean Salt Flat Layer1 as a mask; within its extent, all pixels originally classified 
as id 34 were reclassified to id 61.  

 
3.6.3.​ Additional post-processing 

 
Some additional remapping and corrections were applied to local errors such 
misclassifications or problems derived from the quality of the data; all these corrections 
were included in the scripts of the process.  

 
 

3.7.​Statistics 
 
Zonal statistics of the mapped classes were calculated for spatial units, such as regions. All 
the spatial units, and the information could be downloaded in the platform of the initiative  

1 https://www.sernageomin.cl/plataforma-publica-de-salares-y-litio/ 
 



4.​Validation Overall Analysis 
 

Validation was performed for the classifications of the 
year 2024. We used two databases of 1654 randomly 
generated points each year with approximately 80 to 100 
points per class (Figure 12). After a proper training step, 
two independent teams classified each point into one the 
classes via photo interpretation on the Google Earth Pro 
platform using the available historical images. If images 
were not found for the year, nearby years before and 
after the target year were used. The classification was 
carried out in two rounds. In the first round, each team 
made up of two members classified a set of points 
independently. The points where the classifiers' decision 
did not coincide were sent to the second round, where a 
third independent subject reclassified each point with a 
discrepancy. Points where no agreement was reached 
were eliminated, points for which there were no images 
close to the target year were also eliminated. With this 
information, the confusion matrices were generated and 
the classification accuracies were calculated. All these 
processes were carried out in Google Earth Engine and 
R-project. Table 4 presents the final confusion matrix for 
level 1 classes. 

 
 

Figure 12: Distribution of validation points. 
 

Table 4: Final confusion matrix for level 1 classes. 
 

 

Forest 

Formation 

Natural non 

forest formation 

Farming and 

silviculture 

Non-vegetate

d area 

Water 

bodies 

Producer 

Accuracy 

User 

Accuracy 

Forest 

Formation 
258 32 17 1 4 0,82 0.84 

Natural non 

forest 

formation 

50 421 30 89 8 0,81 0.7 

Farming and 

silviculture 
10 16 216 2 0 0,86 0.91 

Non-vegetated 

area 
2 42 3 188 0 0,57 0.83 

Water bodies 6 32 0 20 206 0,93 0.80 

 
 
 

 
 
 
 
 
 
 

 



 
 

 

 



5.​Map Collections and Analysis 
 

5.1.​Collection 2 
 
The MapBiomas Chile Collection 2, including all land cover maps between 1999 and 2024, 
transitions and methodological documents are available at  http://chile.mapbiomas.org 

 
It is important to note that MapBiomas Collection maps are an evolving product and other 
Collections with improvements will be available in the future. When using the data, be sure 
to always use the latest version available. MapBiomas maps are best used at scales up to 
1:100,000. Although it is possible to view them at a 1:50,000 scale, we do not recommend 
using them at this scale. Figure 13 shows the mural printable land cover map for 2024. 

 
Figure 13: Land cover map for 2024 (MapBiomas Chile Collection 2). 

 
The summary of the main results can be reviewed in the following document: 
 

■​ Fact Sheets: Highlighted statistics for the main classes of Hierarchical Level 2 and 
differentiated by geographic area (North, Center-Sou and Patagonia): [https:/ 
/chile.mapbiomas.org/destacados/] 

 

http://chile.mapbiomas.org/


5.2.​Concluding Remarks and Perspectives 
 
The MapBiomas Chile initiative combines people, algorithms, satellite information and 
large-scale processing in a methodology that has revolutionized the operational large-scale 
generation of LULC maps. MapBiomas provided an ideal environment to enhance and 
share skills and abilities by collaborators from different countries, cultures, languages but 
similar values: learning by doing. Thanks to Google Earth Engine and open source 
technology it was possible to access and process large scale datasets of satellite imagery 
such as the one generated by the MapBiomas project. The next collection of MapBiomas 
Chile will include an enhanced legend expanding the conceptual resolution of classes. 
 
The change in strategy to using ecoregions for training purposes yielded good results and 
helped organize the work more efficiently. Collection 2 significantly improved data quality 
compared to Collection 1. However, several challenges remain for future collections, 
including: 
 

■​ Improving the quality of the Landsat mosaics used as a basis for classification, 
particularly for the early years of the collection. 

■​ Reviewing and eventually modifying the methodological approach for some 
anthropogenic classes, such as forestry and agriculture. 

■​ Analyzing the need to open some lower-level classes, such as forestry, agriculture, 
and other non-vegetated areas. 

■​ Because some ecoregions were subdivided due to climatic and biophysical 
differences, such as the Valdivian Forest Ecoregion, it is necessary to move toward a 
more formal definition of sub-ecoregion territorial units based on multi-criteria 
analysis. 

■​ Evaluating the functioning of the governance model, roles, and responsibilities. 
 
Finally, based on this collection, more systematic work will begin to disseminate the results, 
identify potential collaborators, and expand the local network. Several public and private 
stakeholders have already been identified as interested in participating, which provides an 
optimistic outlook for the future of MapBiomas Chile and the international network in 
general. 
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