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1.​ Introduction 

1.1.​Overview 

Collection 2 of MapBiomas Chile incorporated the mapping of the Infrastructure class as a 
binary, cross-cutting layer across the national territory. This inclusion was conducted due to 
the frequent confusion with other non-vegetated land use classes, such as “Other 
non-vegetated areas” (25), “Rocky soils” (29), and “Sand, beach, and dunes” (23). 

The Infrastructure class is composed of built-up surfaces and structures associated with 
large and small urban centers (towns), as well as continuous infrastructure areas larger than 
one hectare. It also includes industrial zones, road networks, and airports. 

The general methodology can be seen in Figure 1.  

 

Figure 1: General Methodology. 

 

 



2.​ Landsat Image Mosaics 

2.1.​ Mosaic Composition 

The mosaic composition used for the cross-cutting classification of the “Infrastructure” class 
relied on the image mosaics previously generated for the general Land Cover and Land Use 
classification of MapBiomas Chile Collection 2. The composition was made using surface 
reflectance satellite imagery with atmospheric correction from the Landsat 5, 7, and 8 
sensors, generated annually from 1999 to 2024. 

2.2.​ Feature Space 

For the classification of this class, we used a subset of the variables derived from the overall 
mosaic for general LULC. The variables used as predictors are shown in table 1. 

Table 1: Feature space, variables for the detection of infrastructure surfaces with the associated 
reducer. 

Variable Description Reductor 
blue Landsat blue band Median 

green Landsat green band Median 
red Landsat red band Median 
nir Landsat nir band Median 

swir1 Landsat swir 1 band Median 
swir2 Landsat swir 2 band Median 
soil Soil fraction Median 

snow Snow fraction Median 
cloud Cloud fraction Median 
slope Slope Static topographic variable 
ndvi Formalized Difference Vegetation Index Median 
evi2 Enhanced Vegetation index Median 
ndwi Normalized difference wet index Median 
mbi Modified Bare Soil Index Median 
ndbi Normalized Difference Built-up Median 
ndsi Normalized Difference Snow Index Median 

 

Finally, a representative mosaic was created for each year, consisting of a total of 88 bands, 
based on the calculation of statistical reducers to generate the values for each pixel. These 
reducers correspond to: Median, Median of the dry season, Median of the wet season, 
Amplitude, Standard deviation, Minimum, Maximum, and Median texture. Only NDWI, MBI, 
NDBI and NDSI just have median reducers. 

 

 



3.​ Classification 
 

3.1.​ Definition of potential areas 
 
We restricted the classification geographical extent to a mask built using a the VIIRS 
Nightime Day/Night Annual Band Composite V2.2 product which is constructed from an 
annual time series of nighttime lights using monthly cloud-free radiance averages 
obtained from luminosity data collected by the sensor NASA/NOAA Visible Infrared 
Imaging Radiometer Suite (VIIRS) (Elvidge et al., 2021). The "average_masked" band 
representing the twelve-month average is specifically used to eliminate sporadic lights 
produced by the Northern Lights, fires or other isolated events. The used mask was built 
by selecting only the areas that had a pixel value greater than the value 0.4. This 
threshold was chosen based on iteration and revision of the area selected by the mask. 
This area corresponds to the potential infrastructure area, within which, we applied the 
random forest algorithm to classify the only two classes: Infrastructure and Others.  
 

3.2.​ Definition of the Infrastructure class (ID: 24) 
 
For collection 2, the infrastructure class (ID 24) is defined as urban and industrial areas, 
national and regional main roads, and other man-made structures such as seaports and 
airports. Mining and solar energy are not included. 
 
All other coverage or uses that fall within the potential infrastructure area defined with the 
night lights were grouped into an auxiliary class called 'Others'. 
 

3.3.​ Samples Collection 
 
Infrastructure samples were collected through photointerpretation, manually drawing 
polygons using the 1998 image as a reference. These initial samples were only collected in 
large cities, avoiding including vacant lots, parks, squares, swimming pools and other 
structures typical of cities but that could increase confusion with other coverages in the 
polygons. 
 
To train the samples of the class: ‘Others', the training points used for the general 
classification of the LULC filter by the potential infrastructure areas were used. 
 

3.4.​Working areas  
 
For Collection 2, ecoregions were used to stratify the national territory. This allowed for the 
collection of sampling points that explicitly considered the biophysical differences of the 
country's various geographic zones. Ecoregions are large geographic units that group 
natural communities with distinctive species compositions, ecological dynamics, and shared 
environmental conditions (Olson et al., 2001). We consider eight ecoregions: Dry Puna, 
Atacama Desert, Andean Steppe, Chilean Matorral, Valdivian temperate forests, Magellanic 
subpolar forests, Patagonian steppe and Ice and Rocks (Figure 2).  
 

 



 
Figure 2: Chilean Ecoregions.  

 
For the infrastructure layer, the ecoregions were also intersected by Chilean administrative 
political regions (level 2) to create a series of sub-ecoregions to facilitate the adjustment of 
the algorithms. This was also done to inspect the classification quality. 
 
 

3.5.​Classification Algorithm 
 
Digital classification was performed in each working zone, year by year, using a 
Random Forest algorithm (Breiman, 2001) available in Google Earth Engine, running 
100 iterations (random forest trees). The classification was carried out iteratively, 
increasing the complementary samples  until an acceptable visual adjustment of the 
large cities in each area was achieved. Final classification was performed for all 
working zones and years with stable and complementary samples (Figure 3). All years 
used the same subset of samples and it was trained in the same mosaic of the year 
that was classified.  

 

 



 

Figure 3: Representation of Landsat mosaic and training samples with two classes (red and 
blue). 

 

 



 
 

4.​ Post Processing  
 
As with the overall classification, the final Infrastructure classification results in each work 
area were improved by applying a set of temporal and spatial filters. First, temporal filters 
were applied to generate a more stable classification pattern over time, avoiding 
unexpected class variations during consecutive years or within a short period. Second, gap 
filter was applied to correct missing data and recover areas with missing information with 
pixels from earlier or later years. Third, spatial filters were applied to reduce the 
salt-and-pepper effect. In the Last step, a series of complementary filters was applied to 
reduce the remaining errors. 

 
4.1.​ Temporal filters 

 
To eliminate high-frequency variation in classification produced by differences in annual 
mosaic characteristics, additional spatial filters are applied. The first for a 3-year window 
that begins with the oldest classification to the most recent, without modifying the first 
and last year. In this window, when the target year (t) is not equal to the previous (t-1) 
and subsequent (t+l), the class of the previous year (t-1) is modified. This filtering is done 
in order of priority, changing and modifying the class with the biggest classification or 
noise problems, in this case "24" and then reviewing the most stable class, in this case 
"68". To the new classification, a temporal filter is applied that considers 4-year moving 
windows. This filter works the same as the previous one, but the condition is that the 
year (t) must be equal to the previous year (t-1) and different from the classification from 
2 years before (t-2) and different from the year after (t+l). If the condition is met the 
classification is replaced by t-2. The iteration is carried out in order of priority from 1999 
to 2024 without modifying the first and last year. Finally, a 5-year temporal filter was 
applied, whose operation is similar to the previous ones but the same years must be the 
3 central ones (Figure 4).   

 
Figure 4: Temporal filter concept. 

 
 
 
 

 



4.2.​ First and Last year filter 

Extreme filters are applied exclusively to the temporal boundaries of the time series that is, the 
first and last years. For the first year, each pixel is compared with its class in the following year 
(x+1); for the last year, the comparison is made with the preceding year (x–1). The decision rule 
states that if a pixel’s class in year x differs from that of its adjacent year, belonging to different 
thematic groups (i.e., anthropic vs. natural), the pixel in year x is reclassified to match the class 
of its neighboring year (Figure 5). 

 
Figure 5: Extreme filter concept 

 
4.3.​ Fill Gaps filter 

 
A filter was applied to fill no-data pixels, or “gaps,” within the temporal series. Since, in 
principle, no-data values are not permitted, they were replaced with the temporally nearest 
valid classification. 
In this procedure, if no valid future observation was available, the no-data pixel was replaced 
by its most recent valid class. Consequently, gaps should only persist in cases where a 
given pixel remained classified as no-data throughout the entire temporal domain. 
 

4.4.​ Spatial filter 
The spatial filter consists of eliminating areas where the number of pixels connected 
vertically, diagonally or horizontally is less than 11 pixels. This process is carried out by 
adding an auxiliary variable that contains for each pixel the number of connected pixels of 
the same class, then a moving window of 2x2 pixels is defined in which the mode is 
calculated and in each pixel that does not meet the condition of connected pixels, the 
original value is replaced by the mode of the classification in the neighborhood. This 
process is carried out independently each year. 

 



 

Figure 6: Spatial filter concept. 

 

4.5.​ Frequency filter 
 
The frequency filter was applied after the temporal filtering stage. The purpose of this filter is to 
reinforce temporal stability in land-cover types correcting residual fluctuations that may persist 
after the application of the temporal filters. This filter operates by analyzing the frequency of class 
occurrence for each pixel within the final years of the time series. For every pixel, the filter 
identifies the first year from which a given class becomes dominant or recurrent in the 
subsequent years. Once this year is detected, all following years are reassigned to the most 
frequent class within that period. In practice, this approach replaces sporadic or inconsistent 
class changes with the modal (most frequent) class observed in the stable portion of the series 
(Figure 7). 

 

Figure 7: frequency filter concept. 
 



4.6.​ Morphological filter 
 
The morphological filter is a spatial post-processing operation applied to the classification maps 
to improve the geometric consistency of a class. It aims to remove small holes, isolated pixels, 
and internal irregularities that appear within class patches, ensuring a more homogeneous and 
realistic spatial representation. The procedure is based on a morphological closing operation, a 
common technique in image processing used to fill small internal gaps while preserving the 
general shape of the features. 
 
The annual classification is first converted into a binary mask identifying all pixels corresponding 
to the class of interest, over this binary mask, the closing operation is performed by applying a 
dilation followed by an erosion. The dilation temporarily expands the extent of the class areas, 
allowing small gaps between neighboring pixels to be filled. Subsequently, the erosion step 
contracts the expanded areas, restoring the external shape of the polygons while maintaining the 
newly filled internal pixels. Both operations are applied using a diamond-shaped structuring 
element with a radius of one pixel, equivalent to 30 meters. 
 

4.7.​ Remap 

When localized errors persist that are not resolved by spatial or temporal filters, a manual 
remapping is applied as a final step. This procedure allows replacing specific classes within 
defined areas of interest and, if needed, restricting changes to particular years, while 
honoring a priority order for edits. The operation is configured by specifying the source class 
(from) and the target class (to); the algorithm affects only those pixels within the AOI that 
meet this condition. This intervention is used sparingly and in a controlled manner to correct 
specific cases that automatic filters could not stabilize. 

 
 
 

 



5.​ Integration 

After applying all filters, the classifications for each sub-ecoregion are assembled to 
reconstruct the entire national territory. This layer is then integrated into the overall LULC 
map by applying replacement rules for class 24 (Infrastructure) by zone: 

●​ From Arica y Parinacota region to the north of the Copiapó river class Infrastructure 
replaces 23, 25, 29, 12, and 66. 

●​ From the south of the Copiapó river to the southern boundary of the Ñuble region 
class Infrastructure replaces 23, 25, 29, 18, 12, 66, and 9. 

●​ From the northern boundary of the Biobío region to the Magallanes region class 
Infrastructure replaces 23, 25, 29, 18, 66, 15, 59, 9, 33, and 34. 

These rules were defined through inspection and visual validation, identifying in each zone 
which classes most frequently occupied cities, airports, or seaports areas when class 
Infrastructure was not included in the original classification, in order to ensure spatial 
coherence in the final product. 

In Table 2 it’s a summary of the legend with its corresponding pixel identification. 

Table 2: List of Collection 2 classes 

Natural/Anthropic Class name Pixel id 
 1. Forest formation 1 

Natural 1.1. Forest 3 
Natural 1.1.1 Primary Forest 59 
Natural 1.1.2 Secondary Forest 60 
Natural 1.1.3 Dwarf forest 67 

 2. Natural non forest formation 10 
Natural 2.1. Wetland 11 
Natural 2.2. Grassland 12 
Natural 2.3. Steppe 63 
Natural 2.4. Shrubland 66 
Natural 2.5. Rocky Outcrop 29 

 3. Farming and silviculture 14 
Anthropic 3.1. Silviculture 9 
Anthropic 3.2. Agriculture 18 
Anthropic 3.3. Pasture 15 

 4. Non-vegetated area 22 
Anthropic 4.1. Infrastructure 24 
Natural 4.2. Beach, Dune and Sand Spot 23 
Natural 4.3. Salt Flat 61 
Natural 4.4. Other non-vegetated area 25 

 5. Water bodies 26 
Natural 5.1. River, lake or ocean 33 
Natural 5.2. Ice and snow 34 

 6. Not observed 27 

 
The last part to complete the infrastructure layer was to add Chile's road network. For this, 
the vector map of main regional and national roads of Chile1 was converted to raster and 
joined year by year with the infrastructure classification 

1 https://mapas.mop.gov.cl/red-vial/Red_Vial_Chile.zip 
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