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EXECUTIVE SUMMARY

1. Introduction
1.1. Scope and content of the document

The objective of this document is to describe the theoretical basis, justification and
methods applied to produce annual maps of land use and land cover (LULC) in Chile
from 2000 to 2022 (Collection 1). The document presents a general description of the
satellite image processing, the feature inputs and the process step by step applied to
obtain the annual classifications.

1.2. Overview

Details about the classification methods are provided in order to assist the user to gain
a general understanding of the technical considerations involved, the definition of
intermediate inputs and outputs as well as scientific references supporting each
decision. In addition, this document presents a historical context and background
information, a general description of the satellite imagery datasets, feature inputs, and
the accuracy assessment method applied. This information is intended to inform users
about the strengths and limitations of MapBiomas Chile Collection 1 product.

MapBiomas collections aim to contribute to developing a fast, reliable, collaborative,
and low-cost method to process large-scale datasets and generate historical time series
of LULC annual maps. All data, classification maps, codes, statistics, and further
analyses are openly accessible through the MapBiomas Chile platform
(http://chile.mapbiomas.org/). This is possible thanks to:

i.  Google Earth Engine platform, which provides access to data, image processing,
standard algorithms, and cloud computing facilities.
ii.  Freely available Landsat time-series dataset.
iii.  MapBiomas collaborative network of organizations and experts that share
knowledge and mapping tools.

1.3. Region of Interest

Chile is a long, narrow country located along the western edge of South America,
stretching over 4,300 kilometers (2,670 miles) from North (17°30' S) to South (55°59"
S). Notably, a high rate (about 45%) of the species are endemic, which can be
attributed to its isolation (Squeo et al. 2012). Chile boasts diverse geography, including
the Atacama Desert, one of the driest places on Earth, in the North, the Andes
Mountains running along its Eastern border, and the Pacific Ocean to the west. The
Central valley, in the mid latitudes of the country, is an agricultural and heartland
known for its fertile soils and Mediterranean climate. It is where most of Chile's
population resides and is home to major cities like Santiago, the capital. In Southern
Chile, the Lake District is known for its stunning landscapes of lakes, forests, and
snow-capped mountains. Further South, the northern part of Chilean Patagonia is



characterized by rugged terrain, fjords, and glaciers. Near the end of the continent,
Patagonia becomes even more remote and wild. It features vast expanses of
untouched wilderness, including the Southern Patagonian Ice Field, the third-largest ice
mass in the world (Figure 1).
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Figure 1: Chile and its Regions.

1.4. Key Science and Applications



The scientific applications derived from an annual time-series history of LULC maps in
Chile include:

Mapping and quantifying LULC transitions.

Quantification of gross and net forest cover loss and gain.
Monitoring agriculture, forest plantations and pasture expansion.
Assessing urban expansion and planning.

Water surface and glaciers loss and gain.

Protected areas management.

Biodiversity assessment and distribution modelling.

Climate change adaptation and mitigation strategies.



2. Overview and Background Information
2.1. Context and Key Information

Land cover is defined as the biological or physical cover observed on the earth's surface
(FAO, 2016). Land cover data are used at both a global and local scale in the analysis of
climate change, carbon stock assessment, monitoring of forestry and agricultural
activities, disaster management, territorial planning, urban planning, biodiversity
conservation and in many other public and private spheres. On the other hand, due to
the transformations inherent to growth and development, land cover is highly dynamic
over time and depends on a set of factors and human decisions that determine the use
given to each portion of the territory. To meet the demands of sustainable
development and international commitments, the country requires multiple sources of
data for land cover monitoring that can satisfy current and future demands both
domestically and internationally. However, to do this, a land cover monitoring system
should have the following characteristics:

a. To be based on consistent, unique and systematically applied classification
principles, replicable in space and time.

b. To be able to describe the full range of possibilities and their details through
different hierarchical levels.

c. To be complete, covering the whole target territory.

d. To consider unique, mutually exclusive and unambiguous classes and
categories.

2.2. Historical Perspective: Existent Maps and Mapping Initiatives

In Chile, there currently exists no comprehensive Land Cover monitoring system
covering the national territory. The most analogous initiative, albeit only partially
comparable, is the "Catastro and Evaluation of Native Vegetational Resources,"
established in the 1990s and presently managed by the National Forestry Corporation
(CONAF). However, this initiative predominantly focuses on forested areas, often
neglecting agricultural or urban land covers. Its inadequacy as a true monitoring system
stems from its lack of systematic application over time. Furthermore, its complexity
arises from the amalgamation of three distinct concepts: plant formations (utilizing a
land occupation mapping method), biophysical coverage, and land use (socio-economic
designation). Consequently, this framework remains largely incompatible with
international land cover products, and that needs to be addressed in the near future.

Moreover, methodological alterations, such as changes in the minimum mappable area
and revisions in the definition of certain forest types, further undermine its reliability
as a monitoring tool. Compounding these challenges is the absence of standardized or
routine updates at the national level, with variations observed across different regions.
This persistent stagnation is highlighted by several scientific publications openly
disputing the accuracy of data derived from the cadastre (Miranda et al., 2018).



While the Natural Resources Information Center (CIREN) serves as another repository
of cartographic data, focusing on the management of natural resources and production
in Chile, its primary emphasis lies on providing information pertinent to the economic
utilization of land. This includes data on hydrogeological zones, well formations,
hydraulic infrastructure, agroclimatic parameters, orchard mapping, land ownership
records, and land use capacity. However, akin to the Cadastre, CIREN does not offer
regular or systematic updates conducive to effective land cover monitoring.

The only preexistent actual land cover map was produced by Zhao et al. (2016). They
generated a conclusive land cover map by integrating results from multi-seasonal
mapping, utilizing primarily Landsat 8 imagery acquired predominantly in 2013 and
2014. Supplementary data sources included MODIS Enhanced Vegetation Index data,
high-resolution imagery from Google Earth, and Shuttle Radar Topography Mission
DEM data. The integrated map achieved an overall accuracy of 80% at level 1 and 73%
at level 2, as confirmed by independent validation data. Accuracy assessments for
seasonal map series yielded approximately 70% for each season, with significant
enhancements observed through the integrated use of seasonal information. However,
this product wasn't conceived as a monitoring system providing only a 2014 LULC map.



3. Algorithm Descriptions, Assumptions, and Approaches

The Collection 1 general methodological steps are presented in Figure 2.
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Figure 2: General methodological steps of Collection 1 of land cover and land use annual maps
in Chile.

The first step was to generate annual Landsat mosaics comprising specific temporal
windows to optimize the spectral contrast and better discriminate the LULC classes
across the country. The second step was to derive all feature space attributes from the
Landsat bands to train one random forest classifier (feature space definition) for each
year (Breiman, 2001). Then, yearly training samples were acquired using four working
zones (WZ), each one assigned to University teams as follows:

GEP Lab (U. de Chile): From Arica y Parinacota to Coquimbo Regions (WZ1).
LEP Lab (U. de Concepcidn): From Valparaiso to Biobio Regions (WZ2).
LEPCON Lab (U. de la Frontera): From Araucania to Los Lagos Regions (WZ3).
Universidad de Magallanes: Aysén and Magallanes Regions (WZ4).

In the third step, spatial-temporal filters were applied over the classified data for noise
removal and temporal stabilization. Subsequently, the filtered LULC maps of each
working zone were hierarchically merged (integrated) based on a set of prevalence
rules. Spatial and temporal filters, as well as post-processing remapping algorithms,
were once again applied on the integrated maps to create the final Collection 1
product.

3.1. Landsat Mosaics and Feature Space

Landsat cloud free composites obtained from images distributed along the whole year
were considered (Figure 3) The cloud/shadow removal script takes advantage of the
quality assessment (QA) band and the GEE median reducer. When used, QA values can
improve data integrity by indicating which pixels might be affected by artifacts or
subject to cloud contamination (USGS, 2017). In conjunction, GEE can be instructed to
pick the median pixel value in a stack of images. By doing so, the engine rejects values
that are too bright (e.g., clouds) or too dark (e.g., shadows) and picks the median pixel
value in each band for a specific year. Because for a large part of the national territory,
approximately from the latitude of Santiago to the South, the availability of images
from the Landsat program for years prior to 1998 is very low, it was decided to cover
the period 2000 to 2022 for the first collection. For future collections, it is expected to
extend the length of the time window used.
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Figure 4: Each pixel of the mosaic contains 34 metrics or layers of information.
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The feature space for digital classification of the categories of interest for the
MapBiomas Chile Collection 1 comprises a subset of 34 variables (Table 1, Figure 4).

Table 1: List of variables used as predictors for LULC classification.

Variable Description
Slope In radians derived from the SRTM digital elevation model (Farr et al. 2007).
Aspect In radians derived from the SRTM digital elevation model (Farr et al. 2007).
Elevation Elevation in meters obtained from digital elevation model SRTM (Farr et al. 2007)
TPI Topographic position index (Janness 2006).

Green median texture

Average green texture extracted from the monthly mosaic.

Gcvi median wet

Median of the wet period of the green chlorophyll vegetation index.

Gcvi median

Annual median green chlorophyll vegetation index.

Gcevi median dry

Median dry period green chlorophyll vegetation index.

Blue median

Annual median of the blue band.

Evi2 median

Annual median of the Improved Vegetation Index (Huete et al. 2002).

Green median

Annual median of the green band.

Red median

Annual red band median.

Nir median

Annual median of the near-infrared band.

Swir 1 median

Annual median shortwave infrared band 1.

Swir 2 median

Annual median shortwave infrared band 2.

Gv median Green Vegetation (Souza et al. 2021).

Gvs median Median of the Green Vegetation Shade index (Souza et al. 2021).
Npv median Median de Non-Photosynthetic Vegetation (Souza et al. 2021).
Soil median Median Soil Fraction.

Shade median

Median shade fraction.

Ndfi median

Median of Normalized Difference Fraction Index (Souza et al. 2021).

Ndfi median wet

Median of the Wet period of Normalized Difference Fraction Index (Souza et al. 2021).

Ndvi median

Median normalized difference vegetation index (Rouse et al. 1973).

Ndvi median dry

Median normalized difference vegetation index dry period (Rouse et al. 1973).

Ndvi median wet

Median normalized difference vegetation index wet period (Rouse et al. 1973).

Ndwi median

Median of Normalized Difference Water Index.

Ndwi median wet

Median of Normalized Difference Water Index for wet season.

Savi median Median of Soil-adjusted Vegetation Index.
Sefi median Median of Savanna Ecosystem Fraction Index.
Ndfi stdDev Standard deviation of the Normalized Difference Fraction Index (Souza et al. 2021).
Sefi stdDev Standard deviation of Savanna Ecosystem Fraction Index.
Soil stdDev Standard deviation of Soil fraction (Souza et al, 2021).
Npv stdDev Standard deviation of Non-Photosynthetic Vegetation (Souza et al. 2021).
Ndwi amp Amplitude of Normalized Difference Water Index.
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3.3. LULC scheme and Classification

3.3.1. Legend

The general MapBiomas classification scheme is a hierarchical system comprising four
categorical levels. For the Chilean Collection 1 we only considered the first two (Table
2). At Level 1, there are six classes: 1) Forest formation, 2) Natural non forest
formation, 3) Farming and silviculture, 4) Non-Vegetated Area, 5) Water bodies, and 6)
Not Observed. Level 2 has 13 classes across the six classes of the first categorical level.

Table 2: Classes of land cover and land use of MapBiomas Collection 1 in Chile. Numbers in parentheses
represent the categorical identifier in the LULC collection.

Class Level 1

1. Forest
formation

2. Natural non
forest formation

Class Level 2 (Id)

2.1. Wetland (11)

Description

Vegetative cover dominated by herbaceous vegetation subject to periodic
flooding by fresh and/or salt water.

2.2. Grassland (12)

Plant formations with dominant herbaceous species. Those areas where
the dominant vegetation was herbaceous, whether natural grasslands or
northern grasslands. According to the complementary instruments, the
classifications could be permanent or non-permanent natural vegetation.

2.3. Shrubland (66)

Plant formations dominated by woody species with an average height of
less than 2 m and a diversity of densities, which include from very sparse
thorny thickets to dense sclerophyllous thickets.

3. Farming and

3.1. Forest Plantation (9)

Forest plantations of exotic tree species of commercial interest. This
category includes plantations of Pinus radiata and several species of
eucalyptus (i.e. E. globulus and E.nitens).

Non-Vegetated
areas

silviculture . . Set of agricultural and livestock production areas. It includes annual
3.2. Mosaic of agriculture] s . .
crops, rice fields, fruit orchards, vineyards, fallow lands and meadows for
and pasture (21) . .
animal production.
4.1. Infrastructure Urban areas with a predominance of impermeable surfaces. Highways
(24) and primary paved roads are included in this category.
4.2. Beach, Dune and
Areas dominated by sand with little or no vegetation.
Sand Spot (23)
4.

4.3. Salt flat (61)

Areas characterized by large expanses of flat land covered by a layer of
salt or mineral salts.

4.4. Rocky outcrop (29)

Naturally exposed rocks without soil cover, often with partial presence of
rock vegetation and on steep slopes.

4.5. Other non-vegetated
area (25)

Areas of bare soil or scarce vegetation, with less than 5% coverage, of
natural origin or the product of anthropogenic activities.

6. Not observed (27)

Areas not classified due to the presence of clouds, shadows, atmospheric

noise or low quality of satellite images.
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3.3.2. Samples and Stable Samples

Training samples for each working zone were defined following a strategy of using
random pixels for which the LULC remained the same throughout the entire period (23
years), so named “stable samples”. The stable areas were identified through annual
preliminary classification made using random pixels selected from manually drawn
polygons made by photo interpretation. For this, false-color composites of the Landsat
mosaics for all the 23 years as backdrop and graphs with the temporal behavior of
spectral indices per pixel were used to establish the LULC class. The need for
complementary samples was evaluated by visual inspection and by comparing the
output of the preliminary classification with both Landsat and high-resolution images
available in GEE.

3.3.3. Classification

Digital classification was performed in each working zone, year by year, using a Random
Forest algorithm (Breiman, 2001) available in Google Earth Engine, running 100
iterations (random forest trees). Final classification was performed for all working
zones and years with stable and complementary samples. All years used the same
subset of samples and it was trained in the same mosaic of the year that was classified.
The class “Infrastructure” was left out of this classification step. It was classified in a
separate process and integrated in the post-processing step.

Landsat Training
Mosaic Samples

Figure 5: Representation of Landsat mosaic and training samples with two classes (red and
blue).

3.4. Post-Processing

The results of the final classification in each working zone were improved by applying a
set of filters, to correct missing data, “salt-and-pepper” classification errors and,
specially, cases of misclassification. Furthermore, temporal filters were done with the
aim to generate a more stable classification pattern over time, avoiding unexpected
class variation during consecutive years or a short period of time.

3.4.1. Gap fill filters

A filter to fill no-data pixels, or “gaps”, was applied. Because theoretically the no-data
values are not allowed, they are replaced by the temporally nearest valid classification.
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In this procedure, if no “future” valid position was available, then the no-data value
was replaced by its previous valid class. Therefore, gaps should only exist if a given pixel
has been permanently classified as no-data throughout the entire temporal domain.

3.4.2. Spatial filters

The spatial filter avoids unwanted modifications to the edges of the pixel groups, a
spatial filter was built based on the "connectedPixelCount" function. Native to the GEE
platform, this function locates connected components (neighbors) that share the same
pixel value (Figure 6). Thus, only pixels that did not share connections to a predefined
number of identical neighbors were considered isolated. In this filter, at least six
connected pixels were needed to reach the minimum connection value. Consequently,
the minimum mapping unit is directly affected by the spatial filter applied, and it was
defined as 11 pixels (~1 ha).

E.g. If the number of neighbor

each, dhes Ehd abblied s pixels from the 'same class is <

Yo Rach Hie) application 2 then substitute lfor the
dominant class in the
neighborhood

Customized rules for Newhborhonod

Figure 6: Spatial filter concept.

3.4.3. Temporal filters

The temporal filter uses sequential classifications in a three-year unidirectional moving
window to identify temporally non-permitted transitions (Figure 7). The temporal filter
inspects the central position of three consecutive years (“ternary”), and if the
extremities of the ternary are identical but the center position is not, then the central
pixel is reclassified to match its temporal neighbor class. Temporal filters were divided
into two broad categories according to their functioning: regular and extremes
(beginning and ending). While regular filters only use a 3 year window, extremes can
employ a 3 or 5 years window. Thus, the rule involved in the extreme filters states that
if in year “x” a given pixel is assigned to a class different from the following
(antecedent) two years class - and in that two years the pixel was assigned to the same
class - then the pixel in “x” was reclassified to match the following (antecedent) class.
On the other hand, regular filters were applied between 2001 and 2021 and are based
on the assumption that a class change between consecutive years which is immediately
reverted in the third year is due to a classification error. This decision rule is relaxed
when the temporal window encompasses five years, wherein the reversion can also
occur in the fifth year - that is, the pixel can be misclassified for two consecutive years.

14



A mode filter was applied in Patagonia of the country where the effect of topography
and defects in the mosaics due to high latitudes cause a given pixel to be classified in
several years of the time series as 'Not observed' since the information contained in
the predictors is altered by the aforementioned factors. In the pixels classified as “Not
observed”, a mode filter was applied that replaces with the value of the mode between
classifications that the technician defines as potential in a temporal window. In this
case given the characteristics of the environment the possible classes were forests,
rocky soils and ice and snow.

Each pixel has its classification history assessed and
temporal consistency rules are applied
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Figure 7: Temporal filter concept.

3.4.4. Classification of infrastructure

We restricted the classification geographical extent to a mask built using a the VIIRS
Nightime Day/Night Annual Band Composite V2.1 product which is constructed from
an annual time series of nighttime lights using monthly cloud-free radiance averages
obtained from luminosity data collected by the sensor NASA/NOAA Visible Infrared
Imaging Radiometer Suite (VIIRS) (Elvidge et al., 2021). The “average_masked” band
representing the twelve-month average is specifically used to eliminate sporadic lights
produced by the Northern Lights, fires or other isolated events. The used mask was
built by selecting only the areas that had a pixel value greater than the value 1. This
threshold was chosen based on iteration and revision of the area selected by the mask.
This area corresponds to the potential infrastructure area, within which, we applied the
random forest algorithm to classify the only two classes: Infrastructure and Others. We
used the same 34 variables presented in table 1 as predictors. The total samples of
both classes were weighted with a weight of 50 and 50% with a maximum of 3000
points per class to later be used as training points for the classifier. The classification
was carried out iteratively, increasing the complementary points until an acceptable
visual adjustment of the large cities in each area was achieved.

Once the initial classification is obtained, a series of filters were applied. First, a spatial
filter, which consists of eliminating areas where the number of pixels connected
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vertically, diagonally or horizontally is less than 6 pixels (= 5000 m2). This process is
carried out by adding an auxiliary variable that contains for each pixel the number of
connected pixels of the same class, then a moving window of 2x2 pixels is defined in
which the mode is calculated and in each pixel that does not meet the condition of
connected pixels, the original value is replaced by the mode of the classification in the
neighborhood. This process is carried out independently each year.

To eliminate high-frequency variation in classification produced by differences in
annual mosaic characteristics, additional spatial filters are applied. The first for a 3-year
window that begins with the oldest classification (2001) to the most recent (2021)
without modifying the first and last year. In this window, when the target year (t) is not
equal to the previous (t-1) and subsequent (t+1), the class of the previous year (t-1) is
modified. This filtering is done in order of priority, changing and modifying the class
with the biggest classification or noise problems, in this case “24” and then reviewing
the most stable class, in this case “68”. To the new classification, a temporal filter is
applied that considers 4-year moving windows. This filter works the same as the
previous one, but the condition is that the year (t) must be equal to the previous year
(t-1) and different from the classification from 2 years before (t-2) and different from
the year after (t+1). If the condition is met the classification is replaced by t-2. The
iteration is carried out in order of priority from 2000 to 2022 without modifying the
first and last year. Finally, a 5-year temporal filter was applied, whose operation is
similar to the previous ones but the same years must be the 3 central ones. In this
filter, a function to manually remap misclassified areas is also considered, but it was
not used on this occasion.

3.5. Integration and Transitions Maps

3.5.1. Integration

The integration step involved a process that compiled/overlapped classifications
prepared by the different teams for the four working zones. This process resulted in a
raster map with all classes from 2000 to 2022. Maps of each working zone were
integrated on a pixel-by-pixel basis through the hierarchical overlap of each mapped
class, following prevalence rules defined by experts.

The “Infrastructure” (id 24) class was classified independently and then overlaid over
the integrated mosaic. This was necessary due to frequent confusion with
non-vegetated use classes such as “other areas without vegetation” (id 25), “rocky
soils” (29) and “sand, beach and dunes” (id 23). Before the overlay was performed, the
infrastructure map was further processed. The vector map of main regional and
national roads of Chile'’ was converted to raster and joined year by year with the
infrastructure classification. Finally, the infrastructure final maps were superimposed
with the general classified maps generating the final integrated maps.

thttps://mapas.mop.gov.cl/red-vial/Red_Vial_Chile.zip
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3.5.2. Transition maps

The pixel-by-pixel class differences between any two maps were computed for the
following periods (Figure 8): (A) any consecutive years (e.g. 2001-2002); (B) five-year
periods (e.g. 2000-2005); (C) ten-year period (2000-2010). The class transitions
represent LULC changes as follows:

m Transitions from agriculture classes or bare areas to forest cover or non-forest

natural areas.

Transitions that add water bodies surface.

Transitions that reduce the water surface.

Transitions with profit in forestry plantation.

Transitions from forest cover or non-forest natural areas to agricultural or

non-vegetated areas.

m Non-transition areas or transitions involving unobserved areas or transitions
between classes within level 1 of the legend used.

T2
Total
Ta
Transition
Map
T'l = T2 Total
Pairs of selected years are A map is generated with the Transition matrix indicates where
overlapped for understanding the pixels which had land cover and and when there was land use and
land use and land cover changes land use transitions for each pair land cover change between the
of years selected for comparison. years selected
Eg: 2000-2022
2005-2010
2010- 2020

Figure 8: Transition map concept.

Additional spatial filters were applied in the transition maps. The target is to eliminate
single pixels or streams of pixels in the border of different classes derived from the
creation of transition maps. The general rules for this filter were: (i) pixels with only
one neighbor pixel in the same transition class; (ii) streams of up to five pixels with two
or one neighbor pixel in the same transition class.

3.6. Post-processing
3.6.1. Remapping pastures classes
For the “Mosaic of agriculture and pasture” class we performed further
post-processing. First, a mask was generated using the pixels of the collection where,

at least once during the period, they were classified as agriculture. The “NASA SRTM
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Digital Elevation 30m” product was used to obtain the elevation and slope, which were
crossed with the previously generated mask and the areas that had a slope less than
10° and that were less than 4000 meters above sea level were maintained in the mask.
In addition, another mask was created based only on slope and elevation, which
included areas having a slope less than 10° and an elevation less than 620 meters
above sea level. Both masks were then joined and the Southern area of Chile, Aysén
and Magallanes regions, were left out as in those areas this postprocessing was not
appropriate. A buffer of 100m was generated to the joint buffer. Finally, within the
former mask, a reclassification was applied to the pixels of the grassland class (id 12)
and agriculture (id 18) class to be remapped as Mosaic of agricultural and pasture uses
(id 21). Pixels of these classes that were not found on the mask were classified as
grassland (id 12).

3.6.2. Additional post-processing

Some additional post-processing filters were also applied to the final land cover maps.
Areas classified as Forest Plantation, that were later years classified as Forest (native)
were reclassified to Forest Plantation.

3.7. Statistics

Zonal statistics of the mapped classes were calculated for different spatial units, such as
ecoregions, regions, provinces and municipalities, as well as watersheds and protected
areas. A toolkit in the Google Earth Engine is available to upload user-defined polygons
and download the LULC map.

The used code can be found here:

https://code.earthengine.google.com/?scriptPath=users%2Fmapbiomas%2Fuser-toolk
it%3Amapbiomas-user-toolkit-lulc.js
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4. Validation Strategies

Validation was performed for the classifications of the years 2002, 2012 and 2022. We
used two databases of approximately 1300 randomly generated points each year with
approximately 100 points per class. After a proper training step, two independent
teams classified each point into one the classes via photo interpretation on the Google
Earth Pro platform using the available historical images. If images were not found for
the year, nearby years before and after the target year were used.

The classification was carried out in two rounds. In the first round, each team made up
of two members classified a set of points independently. The points where the
classifiers' decision did not coincide were sent to the second round, where a third
independent subject reclassified each point with a discrepancy. Points where no
agreement was reached were eliminated, points for which there were no images close
to the target year were also eliminated. In total, 2044 points were used to validate the
2022 map, 2000 points to validate the 2012 map and 1770 points to validate 2002
map, reaching 5814 points in total. With this information, the confusion matrices were
generated and the classification accuracies were calculated. All these processes were
carried out in Google Earth Engine and R-project. Tables 3 summarize the user and
producer accuracies for main classes for 2002, 2012 and 2022 land cover maps.

Table 3: Accuracies for main classes for 2002, 2012 and 2022 land cover maps.
U = User accuracy, P = Producer accuracy.

ACCURACIES (%

CLASSES 2002 2012 2022

U P U P U P
Forest 79 80 83 81 88 70
Forest Plantation 84 70 92 75 83 87
Mosaic of Agriculture and Pasture 74 88 81 91 81 87
Infrastructure 82 82 86 89 79 90
River, Lake or Ocean 98 86 98 89 97 87
Ice and Show 85 89 76 81 74 83
Salt flat 88 87 86 86 84 89
Shrublands 68 59 62 61 62 58
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5. Map Collections and Analysis
5.1. Collection 1
The MapBiomas Chile Collection 1, including all land cover maps between 2000 and

2022, transitions and methodological documents are available at
http://chile.mapbiomas.org

It is important to note that MapBiomas Collection maps are an evolving product and
other Collections will be available in the future. When using the data, be sure to always
use the latest version available. MapBiomas maps are best used at scales up to
1:100,000. Although it is possible to view them at a 1:50,000 scale, we do not
recommend using them at this scale. Figure 3 shows the mural printable land cover
map for 2022.

CHILE
COBERTURA Y USO DEL SUELO

Figure 3: Land cover map for 2022 (MapBiomas Chile Collection 1).
La sintesis de los principales resultados se puede revisar en los siguientes documentos:

m Infografia nacional: estadisticas y tendencias resumidas a nivel nacional para el
Nivel jerarquico 1. [https://chile.mapbiomas.org/infografias/]

m Fact Sheets: Estadisticas destacadas para las principales clases del Nivel
jerarquico 2 vy diferenciadas por zona geografica (Norte, Centro-Sur vy
Patagonia). [https://chile.mapbiomas.org/destacados/]
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5.2. Concluding Remarks and Perspectives

The MapBiomas Chile initiative combines people, algorithms, satellite information and
large-scale processing in a methodology that has revolutionized the operational
large-scale generation of LULC maps. MapBiomas provided an ideal environment to
enhance and share skills and abilities by collaborators from different countries,
cultures, languages but similar values: learning by doing. Thanks to Google Earth
Engine and open source technology it was possible to access and process large scale
datasets of satellite imagery such as the one generated by the MapBiomas project. The
next collection of MapBiomas Chile will include an enhanced legend expanding the
conceptual resolution of classes.

For the next collections it will be necessary to change the strategy of working areas to
groups that work on transversal themes across the entire country. This is especially
relevant for non-natural classes, such as infrastructure, agricultural mosaic grasslands
or forest plantations. On the other hand, due to the great latitudinal variation of the
country, it will be necessary to work on natural classes, such as forests, shrublands or
grasslands, separately by ecoregions and not by mere administrative limits. The main
class divisions that are seen as necessary for the next collections are: i) separation of
primary forests from secondary forests, ii) Separation of agriculture from livestock
meadows, iii) Separation of pine and eucalyptus plantations.

Finally, the need to have specialized groups, preferably by ecoregions, that collaborate
both in the compilation of training areas and validation points has been discussed.
During the validation stage, we detected the difficulty of correctly on-screen
interpreting the same class throughout the whole country. This is especially relevant
for some natural types such as shrublands and grasslands that are often confused with
other types of land cover.
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